
A Machine Learning Approach to Genome Compression

Fermi Ma FERMIM@PRINCETON.EDU
Cyril Zhang CYRIL.ZHANG@PRINCETON.EDU

35 Olden Street, Princeton, NJ 08544

Abstract
A database of human genomes is sparse and re-
dundant enough to admit a compact represen-
tation. However, to perform useful operations,
this data typically needs to be decompressed. In
this paper, we explore compressed genome rep-
resentations on which we can operate directly.
We hope that this will have applications in large-
scale data mining of genomes.

1. Introduction
1.1. The 1000 Genomes data set

The 1000 Genomes Project is an open-source data set con-
sisting of genome data from 2504 individuals spread over
26 worldwide ethnic groups (Consortium et al., 2012). The
project aims to include all alleles that appear with greater
than 1% frequency in each population. The data set does
not come with any phenotype information other than pop-
ulation label and kin relations.

The full data set, in its final version, consists of 84,739,846
variants across 2504 people. In our preliminary studies,
as a representative subset of autosomal genome data, we
focus on 5000 contiguous sites on chromosome 22 for all
2504 individuals at which there is a single allelic variant
(rather than multi-allelic sites).

1.2. Sparsity of allelic variation

Figure 1 shows the frequency of heterozygous and homozy-
gous variant alleles (compared to the data set’s reference
genome) of an arbitrary representative sample of 5000 sites
on chromosome 22. From this plot, we can see that over
40% of variants occur only once in the data set; in fact,
around 90% of variants occur fewer than 10 times. This ob-
servation is central to representing genome data concisely:
there exists a small subset of alleles that exhibits a high

Proceedings of the 32nd International Conference on Machine
Learning, Lille, France, 2015. JMLR: W&CP volume 37. Copy-
right 2015 by the author(s).

degree of variation.

Figure 1. Frequencies for 5000 allelic variants (blue = homozy-
gous, cyan = heterozygous).

The publishers of the 1000 Genotypes data set note that
rarer alleles indicate more recent mutations, and thus are
generally restricted to just one population. As a result,
these rare alleles encode a disproportionately high amount
of information about ethnicity. We will qualitatively verify
this claim in this paper, and this will be an important fact
in determining feature ranking in our compression scheme.

Another useful exploratory view of the data set is the vari-
ant bitmap, shown in Figure 2. This provides a visual veri-
fication of the sparsity structure of our data: a large region
of isolated points (rare variants) dominates the grid, while
the common variants from a thin, dense region of high fre-
quency and variance. Additionally, it is interesting to note
the emergence of a discrete band structure. The individuals
(vertical axis entries) in Figure 2 are grouped by ethnicity,
which strongly suggests that a linear model will success-
fully classify between these phenotypes. Each ethnic group
evidently possesses a visually identifiable fingerprint.

It is not immediately clear, however, that the sparse region
also encodes phenotypic information. In our methods, we
recover features that are important in determining ethnicity

A Machine Learning Approach to Genome Compression

Figure 2. Variant bitmap for 5000 alleles across 2504 individu-
als (white = homozygous reference, black = homozygous variant,
grey = heterozygous).

as the components that arise from sparse regression. We
find that the maximally informative sparse genetic finger-
prints do incorporate a mixture of high-variance and low-
variance alleles.

From the perspective of compression, the sparse and dense
regions can be represented using distinct schemes. As a
first-cut measure, we can store the sparse components (vari-
ants which occur with frequency below some threshold α)
as a variable-length list of nonzero coordinates, and the
dense region as a bitmap. Both formats are very easy to
parse in isolation, in comparison to the run-length encod-
ing approach of Layer et al. (Layer et al., 2015) We rea-
son that this simple compression scheme is sufficient to ex-
ploit the sparsity of the data; such strategies as run-length
encoding, delta encoding, and Burrows-Wheeler transform
pre-processing are designed to exploit further structure of
the bitmaps as strings.

1.3. Ethnicity clustering

The ethnicity labels provided by the 1000 Genomes data set
allows us to conveniently benchmark our methods; we can
evaluate the viability of our compressed data representa-
tions by attempting to distinguish between clusters, which
are well-separated in a simple linear model in the original
vector space.

More specifically, we wish for our data to have the prop-
erty that a short prefix of it (essentially truncating the co-
ordinates of the genotype vectors corresponding to each in-
dividual) keeps clusters well-separated; as we read more
input coordinates, our solution becomes more refined.

As mentioned, each genotype vector is labeled with one
of 26 ethnic groups. The number of samples within each
group ranges from 61 (ASW, African Americans in the
southwestern US) to 113 (GWD, Gambians in the Western
Division of the Gambia).

2. Related work
2.1. Data representation and compression

Human genotypes are typically stored as a table of vari-
ations relative to a fixed reference genome, stored else-
where. This is a ubiquitous practice, and is regarded as
part of the data reduction rather than compression, after se-
quence alignment. The result of this process is usually a
table in variant-centric format (vcf), in which each row
corresponds to a point of variation, and the columns give
the identity of that allele across each individual in the sam-
ple set. In this paper, we will be concerned with further
compressing the genome database, starting from the vcf
representation.

Layer et al. give a heuristic method for genome compres-
sion (Layer et al., 2015). They take the transpose of the
vcf table, and permute the columns (now corresponding to
genotypes at each allele) in increasing order of allele count
in the sample population. This greatly increases compress-
ibility; they subsequently apply a simple run-length encod-
ing scheme so that the data can be indexed, locally decom-
pressed, and queried efficiently. The authors show that this
gives a compression rate roughly on par with the LZ77 al-
gorithm, reducing the space requirement of the 1.3TB raw
vcf files to a much more manageable 14GB.

Christley et al. gave an alternative method for genome
compression. Their method avoids storing the full position
of each SNP along the chromosome, but instead the dis-
tance from the previous SNP, a much smaller number. They
use Huffman coding as a final step, and achieve a 1000-fold
compression on James Watson’s genome (Christley et al.,
2009). This work has inspired a number of other papers,
such as one by Pavlichin et al., that slightly improve the
compression ratio by taking advantage of known genome
structure (Pavlichin et al., 2013).

Our work differs markedly from these approaches to
genome compression. Current compression schemes are
lossless and rely on a full reference genome in order to de-
compress the data. Furthermore, it seems difficult to reach
any useful conclusions by looking only at the compressed
files. In this paper, we focus on achieving a lossy com-
pressed data representation that can be useful in its com-
pressed form. Our data representation will allow us to bet-
ter use the genotype vectors for linear models in machine
learning.

2.2. Compression-based machine learning

One conceivable way to perform machine learning on com-
pressed data is to use the symbols from the compression
algorithm directly as features. This has been explored in
natural language processing to some success. Sculley and
Brodley show that the symbols from Lempel-Ziv and pre-

A Machine Learning Approach to Genome Compression

dictive prefix matching (PPM) family serve as effective fea-
ture vectors (in an implicit high-dimensional vector space)
for a document classification problem. (Sculley & Brod-
ley, 2006). Under this benchmark, they find that these vec-
tors outperform the n-gram and binary bag-of-words mod-
els by a small margin, suggesting that the symbols encode
the structure of the text.

In this paper, we examine an analogous method. However,
we find that compression of genome data does not signifi-
cantly preserve cluster structure. This is perhaps unsurpris-
ing: whereas the compressibility of natural language text
derives from redundancy, the compressibility of genome
data is largely due to the rarity of most alleles.

2.3. Machine learning in genomics

Libbrecht and Noble survey common techniques for ap-
plying machine learning to genomics (Libbrecht & Noble,
2015). Often, a supervised approach is used to train an
algorithm to identify transcription splice sites, promoters,
enhancers, or positioned nucleosomes. They also identi-
fies a number of problems that arise when dealing with ge-
nomic data. Imbalanced class size is often an issue for su-
pervised learning algorithms, since negative examples of
certain structures can vastly outnumber positive examples.

The focus of this paper is different from previous machine
learning work in genomics, as we are not trying to build
a classifier. As such, we also face a very different set of
problems than those mentioned in the Libbrecht and Noble
paper (Libbrecht & Noble, 2015).

3. Methods and Assessment
3.1. PCA indicates high linear separability

One way to immediately verify the linear separability of
ethnic group clusters is to run principal component anal-
ysis (PCA) on the genotype vectors (after z-scoring each
coordinate). Even in two dimensions, some clusters are
clearly well-separated. See Figure 3 for this striking result;
although some pairs of ethnicities tend to be less separa-
ble under this very low-dimensional projection, this shows
that the recoverability of ethnic clusters seems to be a good
benchmark of lossy data compression.

3.2. Failure of compression-based features

We attempted to replicate the approach described by Scul-
ley and Brodley, in which we take the domain of a com-
pression algorithm’s symbol table as the set of coordinates
in an implicit feature space, with the appearance counts of
the symbols as entries. Plotting the same clusters that were
well-separated under 2-dimensional PCA on the raw data,
we see in Figure 4 that the clusters are not recovered.

Figure 3. Plot of z-scored genotype vectors labeled JPT (Japanese
in Tokyo) and ACB (African Caribbeans in Barbados), reduced to
2 dimensions via PCA.

Figure 4. Plot of dimension-reduced vectors in JPT and ACB
clusters, using LZW symbol table-derived feature space.

We found that although string compression algorithms
do successfully produce a shorter representation of the
genome data, the symbols obtained are not reliably infor-
mative of the structure of an individual’s genome. Upon
examining the symbol tables obtained by Lempel-Ziv com-
pression algorithms, we find that they largely consist of
long strings of zeros. The presence of nonzero entries at
differing locations significantly perturbs the structure of the
symbol table, rendering this approach infeasible.

We hypothesize that the compression-based feature may be
salvageable for different problems in bioinformatics. Al-
though it is difficult to justify interpreting a variant bitmap
as a string, it is entirely natural to interpret a raw sequence
of base pairs in the framework of string redundancy. As
such, this approach may be fruitful in classifying between

A Machine Learning Approach to Genome Compression

snippets of DNA belonging to very different organisms
based on the statistical properties of their base pair strings.

3.3. Finer-grained cluster separation via SVMs

To find hyperplanes that separate the clusters in our data,
we can use the linear support vector machine (SVM)
model. Since each allele corresponds to a feature, the di-
mensionality of the data set is extremely high; the features
far outnumber the sample set. This will be true in any ge-
nomic data set in the foreseeable future, as it would be pro-
hibitively expensive to perform whole exome sequencing
on the order of 108 individuals. Even in our representative
sample of 5000 alleles, careful attention must be taken as to
prevent overfitting of models. Thus, we focus on the scope
of high-dimensional data with low sample size.

Dimension reduction (via, say, PCA) is a common answer
to these constraints, and is shown above to preserve sep-
arating hyperplanes. However, when we perform such a
drastic reduction, we lose the informative value of specific
coordinates.

Instead of finding a separating hyperplane, we strengthen
the requirement significantly: we seek a separating hyper-
plane whose normal vector has support over a small subset
of coordinates. This is the classic problem of sparse re-
gression. We found that applying the well-known LASSO
`1 regularization technique indeed produced sparse separa-
tors. For the JPT and ACB groups (N = 104 + 96), we
obtained a linear combination of 30 alleles (out of 5000)
which almost completely separated the clusters; see Fig-
ure 5.

Figure 5. Plot of JPT and ACB clusters, with x-axis determined
by component along sparse separating hyperplane normal. Y-axis
is a random projection, for visualization purposes.

3.4. Cross-validation of sparse linear separators

We tested our sparse SVM for the possibility of overfitting.
We tested the model with the upper bound on the `1 norm
set to 0.3, which in this case returned a separating hyper-
plane with 42 nonzero components. For this experiment,
we again focused on classifying the JPT and ACB popula-
tions.

We performed 10-fold cross validation, and found near-
perfect separation on the unseen testing data for all 10 par-
titions. In Figure 6, we show the results of 2 of the 10
iterations of the 10-fold cross validation scheme.

Figure 6. Plots of 2 of the 10 partitions in 10-fold cross valida-
tion between JPT and ACB clusters. The x-axis is determined by
component along the separating hyperplane from a sparse SVM
trained only from the training set. The y-axis is a random projec-
tion, for visualization purposes. Faded points are the training set
(the remainder of the points) for each fold.

3.5. Compression method

We considered the following compression scheme:

1. Divide the data into chunks of 5000 alleles.

A Machine Learning Approach to Genome Compression

2. In each chunk, identify the most important alleles
by finding (sparse normal) separating hyperplanes for
each pair of ethnicity clusters; call these normals
{nj}.

3. Let n̂ aggregate the importances of the alleles: n̂i =∑
j |nj |.

4. Within each chunk, separate the alleles {i} into two
groups: A+ = {i|n̂i > 0}, and A0 = {i|n̂i = 0}.
Sort A+ in decreasing order of n̂i.

5. Let F1 be the interleaved rows of all the {A+} from
each chunk. Store this as a dense matrix.

6. Let F2 be the rows of all the {A0} with more than εn
entries (we try ε = 0.1), ordered by decreasing variant
count. Store this as a dense matrix.

7. Let F3 be the remainder of the data, the sparse rows of
{A0}, ordered by decreasing variant count. Store this
as a sparse matrix.

8. Output F1, then F2, then F3 as the reordered, com-
pressed data set.

This orders the alleles by their importance when available,
and heuristically by count otherwise. We tested our method
on 20 contiguous chunks of chromosome 22, for a total of
100,000 alleles.

3.6. Assessment of compression efficiency

After processing the entire data set, one can find the size
of our compact representation, and relate it to the total vcf
size. This gives an empirical compression efficiency, which
can be compared to others in practice.

On a segment of the data set, the compression ratio can be
measured as

size of dense data
size of dense F1, F2 + size of sparse F3

.

3.7. Assessment of permutation quality

Our method can be evaluated against two other permuta-
tions of the data: random, and sorted by decreasing vari-
ance. We employ the following methodology:

1. Take the first L = 10 lines of the permutation. Train
an `1-regularized SVM on the ethnicity classification
test problem.

2. Record the classification accuracy.

3. Take the next L lines, and add them to the data set.
Repeat with these new, higher-dimensional genotype
vectors.

4. Preliminary results
4.1. Compression ratio

Our preliminary test on 100,000 alleles gives a compres-
sion ratio of 2.63, with chunk size 5000 and ε = 0.1. Note
that the reference uncompressed size is that of the dense
matrix, which is a much more compact representation than
the raw vcf files.

4.2. Data truncation experiment

Figure 7 shows typical results for the clustering problem
on prefixes of permutations of the alleles. Our permuta-
tion stays reliably ahead of the others in terms of accuracy
in low dimensions, and typically reaches a perfectly split-
ting hyperplane earlier than the others. Thus we conclude
that our method succeeds in selecting important features
for classification.

At this stage of the project, this is our most promising re-
sult; it indicates that our compression scheme works well,
and can perhaps be improved with better tuning of param-
eters.

5. Discussion
5.1. Application in big-data genomics

We imagine that our results might be useful in a big-data
setting, in which coordinate truncation can be modulated to
trade off desired accuracy for running time. Our feature se-
lection produces a rough ranking of alleles by importance;
thus, in permuting the data set by this ranking, any statisti-
cal method can be tuned by taking the first D columns. In
the future, as personal whole exome sequencing becomes
increasingly affordable and accessible, available data will
become richer. We propose the following workflow:

1. Select a phenotype P , and a desired classification er-
ror ε.

2. Take the first D rows (alleles) from the data set, and
train a classifier for P .

3. If the classifier achieves error greater than ε, repeat
with 2D, 4D, . . . rows.

At the end of this process, assuming that the set of alle-
les correlated with the phenotype are not too localized, we
have a truncation of coordinates suitable for our specific
problem. We imagine that this may be useful when we wish
to use the data set to classify (or regress) a large number of
diverse phenotypes.

A Machine Learning Approach to Genome Compression

Figure 7. Plots of `1-regularized classification accuracy vs. num-
ber of features in the permutation associated with our method,
alleles selected in decreasing order of variance, and a random per-
mutation, for two typical pairs of clusters.

5.2. Future directions

In the following weeks, we plan to explore the following
directions:

• Identify regions of interest using a parallel data set
(e.g. OMIM genotype-phenotype database), and in-
vestigate their relationship with the important alleles
determined by our feature selection scheme.

• Process the entire data set using supercomputer re-
sources, once we commit to a method. Obtain a global
compression result, which can be compared to com-
petitors.

• Test our method on the other sets of labels for the
genome vectors: kinship clusters.

References
Christley, Scott, Lu, Yiming, Li, Chen, and Xie, Xiaohui.

Human genomes as email attachments. Bioinformatics,
25(2):274–275, 2009.

Consortium, 1000 Genomes Project et al. An integrated
map of genetic variation from 1,092 human genomes.
Nature, 491(7422):56–65, 2012.

Layer, Ryan M, Kindlon, Neil, Karczewski, Konrad J,
ExAC, Exome Aggregation Consortium, and Quinlan,
Aaron R. Efficient genotype compression and anal-
ysis of large genetic variation datasets. 2015. doi:
10.1101/018259.

Libbrecht, Maxwell W and Noble, William Stafford. Ma-
chine learning applications in genetics and genomics.
Nature Reviews Genetics, 2015.

Pavlichin, Dmitri S, Weissman, Tsachy, and Yona, Golan.
The human genome contracts again. Bioinformatics, 29
(17):2199–2202, 2013.

Sculley, D. and Brodley, C.E. Compression and machine
learning: a new perspective on feature space vectors. pp.
332–341, March 2006. ISSN 1068-0314. doi: 10.1109/
DCC.2006.13.

