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Abstract

A database of human genomes, represented as
a table of variants, exhibits sparsity and redun-
dancy; as a result, numerous lossless compres-
sion schemes for genomic data have been pro-
posed. However, to perform useful operations,
this data typically needs to be decompressed. In
this paper, we give a lossy genome compres-
sion scheme that can be useful in its compressed
form, which we demonstrate by classifying eth-
nic groups. Our method determines a ranking of
alleles by importance for ethnicity classification,
and achieves significantly stronger results than
other ranking heuristics. We also discuss a spec-
ulative application in large-scale data mining.

1. Introduction
1.1. Compression of genomic data

In recent years, the development of high-throughput DNA
sequencing technology that can process thousands of
genomes in parallel has significantly lowered the cost of
DNA sequencing. As a result, storing and transferring
enormous amounts of genomic data has become a central
problem. Ordinary data compression tools such as zip and
rar are not tailored to take full advantage of the structure
of the genome, and thus a wave of new genome-specific
compression methods have sprung up. In this paper, we ap-
proach this compression problem from a machine learning
perspective, using data from the 1000 Genomes Project.

1.2. The 1000 Genomes data set

The 1000 Genomes Project is an open-source data set con-
sisting of genome data from 2504 individuals spread over
26 worldwide ethnic groups (Consortium et al., 2012). The
project aims to include all alleles that appear with greater
than 1% frequency in each population. The data set does
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not come with any phenotype information other than pop-
ulation label and kin relations.

The full data set, in its final version, consists of 84,739,846
genetic variants. In our studies, as a representative subset
of autosomal genome data, we focus on contiguous sites
on chromosome 22 for all 2504 individuals at which there
is a single allelic variant (rather than multi-allelic sites).
We choose to work with 5000 alleles at a time for ease of
computation.

1.3. Rarity of high-variance alleles

Figure 1 shows that over 40% of variants occur only once
across the sampled individuals; in fact, around 90% of vari-
ants occur fewer than 10 times. This observation is central
to representing genome data concisely: there exists a small
subset of alleles that exhibits a high degree of variation.
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Figure 1. Sorted frequencies for 5000 allelic variants (blue = ho-
mozygous, cyan = heterozygous).

The publishers of the 1000 Genotypes data set note that
rarer alleles tend to indicate more recent mutations, and
thus are generally restricted to just one population. As a
result, these rare alleles encode a disproportionately high
amount of information about ethnicity. We will qualita-
tively verify this claim in this paper, and this will be an
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important fact in determining feature ranking in our com-
pression scheme.

Another useful exploratory view of the data set is the vari-
ant bitmap, shown in Figure 2. This provides a visual veri-
fication of the sparsity structure of our data: a large region
of isolated points (rare variants) dominates the grid, while
the common variants form a thin, dense region of high fre-
quency and variance. Additionally, it is interesting to note
the emergence of a discrete band structure. The individuals
(vertical axis entries) in Figure 2 are grouped by ethnicity,
which strongly suggests that a linear model will success-
fully classify between these clusters. Each ethnic group
evidently possesses a visually identifiable fingerprint.
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Figure 2. Variant bitmap for 5000 alleles across 2504 individu-
als (white = homozygous reference, black = homozygous variant,
grey = heterozygous). Alleles are sorted in order of increasing
variant count; the thin black band indicates that a small fraction
of alleles have a high number of variants, while most other alleles
rarely appear in their variant forms.

It is not immediately clear, however, that the sparse region
also encodes phenotypic information. In our methods, we
recover features that are important in determining ethnicity
as the components that arise from sparse SVM classifica-
tion. We find that the maximally informative sparse genetic
fingerprints do incorporate a mixture of high-variance and
low-variance alleles.

From the perspective of compression, the sparse and dense
regions can be represented using distinct schemes. As a
first-cut measure, we can store the sparse components (vari-
ants which occur with frequency below some threshold «)
as a variable-length list of nonzero coordinates, and the
dense region as a bitmap. Both formats are very easy to
parse in isolation, in comparison to a run-length encod-
ing approach (Layer et al., 2015) We reason that this sim-
ple compression scheme is sufficient to exploit the sparsity
of the data; such strategies as run-length encoding, delta
encoding, and Burrows-Wheeler transform preprocessing
are designed to exploit further structure of the bitmaps as
strings. In the interest of implementation simplicity, we do

not examine these approaches.

1.4. The ethnicity classification problem

The ethnicity labels provided by the 1000 Genomes data
set allow us to conveniently benchmark our methods; we
can evaluate the viability of our compressed data repre-
sentations by attempting to distinguish between ethnicities,
which are well-separated in a simple linear model in the
original vector space.

More specifically, we wish for our data representation to
have the property that a short prefix of it (essentially trun-
cating the coordinates of the genotype vectors correspond-
ing to each individual) is sufficient to separate clusters;
as we read more input coordinates, our solution becomes
more refined.

As mentioned, each genotype vector is labeled with one
of 26 ethnic groups. The number of samples within each
group ranges from 61 (ASW, African Americans in the
southwestern US) to 113 (GWD, Gambians in the Western
Division of the Gambia).

2. Related work

2.1. Data representation and compression

Human genotypes are typically stored as a table of varia-
tions relative to a fixed reference genome, stored elsewhere.
This is a ubiquitous practice, and is regarded as part of
the data reduction rather than compression, after sequence
alignment. The result of this process is usually a table in
variant call format (vcf), in which each row corresponds
to a point of variation, and the columns give the identity of
that allele across each individual in the sample set. In this
paper, we will be concerned with further compressing the
genome database, starting from the vcf representation.

Layer et al. give a heuristic method for genome compres-
sion (Layer et al., 2015). They take the transpose of the
vcf table, and permute the columns (now corresponding to
genotypes at each allele) in increasing order of allele count
in the sample population. This greatly increases compress-
ibility; they subsequently apply a simple run-length encod-
ing scheme so that the data can be indexed, locally de-
compressed, and queried efficiently. The authors show that
this gives a lossless compression rate roughly on par with
the LZ77 algorithm, reducing the space requirement of the
1.3TB raw vcf files to a much more manageable 14GB.

Christley et al. gave an alternative method for genome
compression. Their method avoids storing the full posi-
tion of each single nucleotide polymorphism (SNP) along
the chromosome, but instead the distance from the previous
SNP, a much smaller number. They use Huffman coding as
a final step, and achieve a 1000-fold compression on James



Compact Genome Representations for Machine Learning

Watson’s genome (Christley et al., 2009). This work has in-
spired a number of other papers, such as one by Pavlichin
et al., that slightly improve the compression ratio by tak-
ing advantage of known genome structure (Pavlichin et al.,
2013).

Our work differs markedly from these approaches to
genome compression. Current compression schemes are
lossless and rely on a full reference genome in order to de-
compress the data. Furthermore, it seems difficult to reach
any useful conclusions by looking only at the compressed
files. In this paper, we focus on achieving a lossy com-
pressed data representation that can be useful in its com-
pressed form. Our data representation will allow us to bet-
ter use the genotype vectors for linear models in machine
learning. Unfortunately, since the 1000 Genomes Project
data includes no phenotypic information other than ethnic-
ity, we can only train and test our data representation on the
ethnicity classification task.

2.2. Compression-based machine learning

One conceivable way to perform machine learning on com-
pressed data is to use the symbols from the compression
algorithm directly as features. This has been explored in
natural language processing to some success. Sculley and
Brodley show that the symbols from Lempel-Ziv and pre-
dictive prefix matching (PPM) family serve as effective fea-
ture vectors (in an implicit high-dimensional vector space)
for a document classification problem. (Sculley & Brod-
ley, 2006). Under this benchmark, they find that these vec-
tors outperform the n-gram and binary bag-of-words mod-
els by a small margin, suggesting that the symbols encode
the structure of the text.

In this paper, we examine an analogous method. However,
we find that compression of genome data does not signifi-
cantly preserve cluster structure. This is perhaps unsurpris-
ing: whereas the compressibility of natural language text
derives from redundancy, the compressibility of genome
data is largely due to the rarity of most alleles.

3. Methods and Assessment

In the remainder of this paper, we freely interchange the
terminology of alleles, features, and coordinates (of geno-
type vectors), depending on whether context calls for us to
emphasize the perspectives of applications, machine learn-
ing, or compression. These terms refer identically to the
genetic variations at a single allelic site. When we map this
to a number, we are referring to the number of copies of the
variant allele possessed by an individual, which can be 0,
1, or 2.

3.1. PCA indicates high linear separability

One way to immediately verify the linear separability of
ethnic group clusters is to run principal component analy-
sis (PCA) on the genotype vectors (after z-scoring each co-
ordinate). Even in two dimensions, some pairs of clusters
— for example, the Japanese and African Caribbean groups
— are clearly well-separated (Figure 3). Although this de-
gree of separability under this two-dimensional projection
is atypical, this suggests that the linear model is faithful
to the structure of ethnic clusters. In particular, we may
use the separation of the JPT and ACB clusters as a bench-
mark for the viability of a linear model with features de-
rived from any particular lossy compression scheme. In the
following section, we use this benchmark to show a nega-
tive result for features derived from text compression.
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Figure 3. Plot of z-scored genotype vectors labeled JPT (Japanese
in Tokyo) and ACB (African Caribbeans in Barbados), reduced to
2 dimensions via PCA. z-axis is the component along the first
factor; y-axis is the component along the second.

3.2. Clustering with compression-based features

We attempted to replicate the approach described by Scul-
ley and Brodley, in which we take the keys of a compres-
sion algorithm’s symbol table as the set of coordinates in an
implicit feature space, with components set as the appear-
ance counts of these symbols. Embedding the benchmark
clusters that were well-separated under 2-dimensional PCA
on the raw data, we see in Figure 4 that the clusters are not
recovered.

We found that although string compression algorithms
do successfully produce a shorter representation of the
genome data, the symbols obtained are not reliably infor-
mative of the structure of an individual’s genome or of eth-
nicity. The symbols that this method produces can be reli-
able for learning about text, as we can use them for impor-
tant information about redundancies. However, the primary
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Figure 4. 2-dimensional PCA embedding of JPT and ACB clus-
ters, using LZW symbol table-derived feature space.

redundancy in our sparse genome data is due to long strings
of zeros. As aresult, the symbols depend heavily on the po-
sitions of nonzero entries, which we do not believe encodes
important genomic information. This is likely why we can-
not recover clusters in Figure 4.

We hypothesize that the compression-based features may
be salvageable for different problems in bioinformatics.
Although it is difficult to justify interpreting a variant
bitmap as a string, it is entirely natural to interpret a raw
sequence of base pairs in the framework of string redun-
dancy. As such, this approach may be fruitful in classify-
ing between snippets of DNA belonging to very different
organisms based on the statistical properties of their base
pair strings.

3.3. Finer-grained cluster separation via SVMs

We consider the problem of finding hyperplanes to sepa-
rate ethnic groups in our data, with the hope that normal
vectors to these hyperplanes will give useful information
for a compression scheme.

To find hyperplanes that separate the ethnic clusters, we can
use the linear support vector machine (SVM) model.

Since each allele corresponds to a feature, the dimension-
ality of the data set is extremely high; the features far
outnumber the sample set. This will be true in any ge-
nomic data set in the foreseeable future, as it would be pro-
hibitively expensive to perform whole exome sequencing
on the order of 108 individuals. Even in our representative
sample of 5000 alleles, careful attention must be taken as to
prevent overfitting of models. Thus, we focus on the scope
of high-dimensional data with low sample size.

Dimension reduction (via, for instance, PCA) is a common

answer to these constraints, and is shown above to preserve
separating hyperplanes. However, when we perform such a
drastic reduction, we lose the informative value of specific
coordinates.

Instead of finding a separating hyperplane, we strengthen
the requirement significantly: we seek a separating hyper-
plane whose normal vector has support over a small subset
of coordinates. This is the classic problem of sparse re-
gression. We found that applying the well-known LASSO
¢4 regularization technique indeed produced sparse separa-
tors. For the JPT and ACB groups (N = 104 + 96), we
obtained a linear combination of 30 alleles (out of 5000)
which almost completely separated the clusters ( Figure 5).
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Figure 5. Plot of JPT and ACB clusters, with x-axis determined
by component along sparse separating hyperplane normal. Y-axis
is a random projection, for visualization purposes.

3.4. Cross-validation of sparse linear separators

We tested our sparse SVM classifier for the possibility of
overfitting. We tested the model with the upper bound on
the ¢1 norm set to 0.3, which in this case returned a sep-
arating hyperplane with 42 nonzero components. For this
experiment, we again focused on classifying the JPT and
ACB populations.

We performed 10-fold cross validation, and found near-
perfect separation on the unseen testing data for all 10 par-
titions. In Figure 6, we show the results of 2 of the 10
iterations of the 10-fold cross validation scheme.

3.5. Compression method by ranking

We considered the following compression scheme:

1. Divide the data into blocks of 5000 alleles.

2. In each block, identify the alleles most useful for eth-
nicity classification by finding (sparse normal) sepa-
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Figure 6. Plots of 2 of the 10 partitions in 10-fold cross validation
between JPT and ACB clusters. The x-axis is determined by the
component along the separating hyperplane from a sparse SVM
classifier trained only from the training set. The y-axis is a ran-
dom projection, for visualization purposes. Faded points are the
training set (the remainder of the points) for each fold.

rating hyperplanes for each pair of ethnicity clusters;
call the normal vector for the jth hyperplanes {n;}.

3. For the ith allele, let 2; = 3_; [n;[. This is a rough
measure of the importance of that allele.

4. Within each block, separate the alleles {i} into two
groups: AT = {iln; > 0}, and A° = {i|n; = 0}.
Sort A% in decreasing order of 7.

5. Let Fy be the interleaved rows of all the { A"} from
each block. Store this as a dense matrix.

6. Let F, be the rows of all the { A°} with more than en
entries (we try € = (.1), ordered by decreasing variant
count. Store this as a dense matrix.

7. Let F3 be the remainder of the data, the sparse rows of
{A"}, ordered by decreasing variant count. Store this
as a sparse matrix.

8. Output F7i, then F5, then F3 as the reordered, com-
pressed data set.

This orders the alleles by their importance when available,
and heuristically by count otherwise. We tested our method
on 20 contiguous blocks of chromosome 22, for a total of
100,000 alleles.

3.6. Assessment of compression efficiency

After processing the entire data set, one can find the size
of our compact representation, and relate it to the total vcf
size. This gives an empirical compression efficiency, which
can be compared to others in practice.

On a segment of the data set, the compression ratio can be
measured as

size of dense data

size of dense F, I + size of sparse F3

3.7. Assessment of permutation quality

Our method can be evaluated against two other permuta-
tions of the data: random, and sorted by decreasing vari-
ance. We employ the following methodology:

1. Take the first L = 10 lines of the permutation. Train
an ¢ -regularized SVM classifier on the ethnicity clas-
sification test problem.

2. Record the classification accuracy.

3. Take the next L lines, and add them to the data set.
Repeat with these new, higher-dimensional genotype
vectors.

However, with this data set, the paucity of phenotypic la-
bels forces us to use the same classification problem to de-
rive and test this permutation. This potential circularity is
addressed using a training and testing scheme similar to
leave-one-out cross-validation. We validate the results of
these experiments as follows:

1. Choose two ethnicities C; and Cs as the test set. Let
all other genotypes be in the training set.

2. Run our compression/ordering scheme on the training
set.

3. Assess the quality of the permutation for classifying
between C7 and Cs.

This tests if our permutation, trained on a subset of clusters,
is suitable for distinguishing between novel clusters.
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3.8. The genotype covariance matrix

When considering methods to evaluate the performance of
our ranking algorithm, one desirable quality is that it does
not appeal to the same classification problem from which
the ranking is derived. However, since we only have one
type of label, such a method must only involve some func-
tion of the genotype vectors only. The space of such “first-
principles” objectives is extremely limited.

One (and possibly the only) natural object to consider is
the covariance matrix of individuals. In settings such as
detecting and removing population stratification effects, a
covariance matrix is directly required. However, upon ex-
perimentation, it was shown that randomly sampling alle-
les performed much better than our method or any other
heuristic tested. We interpret this negative result as arising
from the high autocorrelation of the vectors; in the absence
of costlier tools that negate the notion of ranking, sampling
alleles from any ranking will result in redundancies that
skew the estimator for the covariance matrix. Thus, we
proceed with the validation scheme described in the previ-
ous section, despite the undesirable property that we cannot
be certain that it generalizes to all phenotypes.

3.9. An alternative ranking scheme

Our ranking scheme involves comparing 5000 alleles at a
time in 20 separate sparse SVM classifiers, and then weav-
ing together the results to get an overall permutation of
100,000 alleles. Of course, there may be a better choice
of parameters, or a smarter way to combine the results of
multiple SVM classifiers. Here, we consider the possibility
of a more robust scheme for determining the best ranking
of alleles

If we view each sparse SVM ranking step as a “compe-
tition” among alleles, this ranking problem can be solved
with existing methods for developing a ranking based on
numerous small competitions. The general framework is
that there are a fixed number of contestants who repeat-
edly compete in ranked competitions involving a subset of
the competitors, and the goal is to come up with an overall
ordering of the competitors by skill. In the Bradley-Terry
model, each contestant (allele) is given a positive-valued
parameter 7;, where Pr[i beats j] = v; /(7 + 5)-

We can obtain the maximum-likelihood values of - through
iterative computations given the results of numerous com-
petitions between the alleles (Hunter, 2004). This suggests
the following ranking method:

1. Run sparse SVMs on 100 (any small constant will suf-
fice) randomly chosen alleles at a time, and denote the
winners of each competition as the alleles whose com-
ponent in the sparse SVM are non-zero.

2. Calculate the maximum-likelihood values of +.

3. Rank alleles in decreasing order of .

Unfortunately, to calculate values of v, we have to run
enough competitions (sparse SVM ranking steps) for the
following assumption to be satisfied: for every partition of
the alleles into two sets, one allele in the second set beats
some allele in the first set in some competition (Hunter,
2004). Running enough sparse SVM ranking steps to sat-
isfy this assumption for 100,000 alleles is extremely com-
putationally expensive, and thus we were unable to even
run this ranking scheme.

4. Results
4.1. Compression ratio

Our preliminary test on 100,000 alleles gives a compres-
sion ratio of 2.63, with block size 5000 and ¢ = 0.1. Note
that the reference uncompressed size is that of the dense
matrix, which is a much more compact representation than
the raw vcf files. Applying the method of Layer et al. and
measuring compression ratio in the same way gives a ratio
of 1.67. This suggests that our method achieves a competi-
tive compression rate.

4.2. Classification efficiency

Figure 7 shows typical results for the clustering problem on
prefixes of permutations of the alleles. In each run of the
experiment, we recompute the permutation, excluding two
of the clusters, then attempt to separate them by a sparse
SVM classifier. Our permutation stays reliably ahead of
the others in terms of accuracy in low dimensions, and typ-
ically reaches 100% accuracy with the fewest features; we
demonstrate this more formally in the following section.
We thus conclude that our feature ranking method succeeds
in nontrivially capturing the structure of the clusters.

4.3. Quantifying difficulty of separation

From Figure 7 and similar plots for other pairs for ethnic-
ities, we remark qualitatively that our ranking does partic-
ularly well in separating groups that are “close”, accord-
ing to geography or known migrational history. To test a
rigorous claim of this nature without relying on anecdotal
evidence, we use the haploid mitochondrial DNA of the in-
dividuals, included with the data set.

Indeed, we verified that the (0-1) mitochondrial DNA vec-
tors, with 3874 variants, exhibited high population cluster-
ing (mean Fgpr ~ 0.123, compared to 0.075 for the 5000-
allele segment of chromosome 22). Furthermore, due to the
the fact that mutations occur very infrequently, mitochon-
drial DNA is known to be a good determinant of ancestral
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Figure 7. Plots of ¢ -regularized classification accuracy vs. num-
ber of features in the permutation associated with our method,
alleles selected in decreasing order of variance, and a random per-
mutation, for two typical pairs of clusters.

origin, and can be used to inform a notion of “distance”
between ethnic groups (Lee et al., 2011). For each ethnic
group, we compute the average mitochondrial DNA vector,
and then we define the distance between two ethnic groups
be the /5 distance between their corresponding average mi-
tochondrial genome vectors.

Next, we require a consistent measure of the advantage
of our permutation over the sort-by-variance heuristic. To
grant equal weighting to all prefix lengths, we compute for
each classification problem the integral of the signed dif-
ference between the blue and red curves, as in Figure 7,
such that a positive (negative) integral implies that our per-
mutation does better (worse) than sort-by-variance. Some
typical examples of these integrands are shown in Figure 8.

Using these measures of cluster distance and advantage,
we verified the claim that our method performed better
on “harder” problems (differentiating between genetically
closer groups). Our results are summarized in Figure 9,
where there is a clear negative trend as expected. Further-
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Figure 8. Plot of difference in classification accuracy between our
permutation and the sort-by-variance permutation vs. number of
features used in classification. Three different pairs of ethnicities
with varying mitochondrial distances are considered: Japanese vs.
African Caribbean (far), Finnish vs. Mexican Ancestry in Los
Angeles (medium), and Japanese vs. Han Chinese (close).

more, only 12 out of 325 points lie below the zero line,
showing that our permutation does not often confer a dis-
advantage; when it does, it is a modest one. Interestingly,
the pairs of ethnicities for which our permutation compara-
tively does the worst are almost exclusively between tribal
groups in sub-Saharan Africa.

5. Discussion
5.1. Application in big-data genomics

We imagine that our results might be useful in a big-data
setting, in which coordinate truncation can be modulated
to trade off desired accuracy for running time. In general,
our feature selection scheme produces a rough ranking of
alleles by importance in separating a set of given labels;
thus, in permuting the data set by this ranking, any statisti-
cal method can be tuned by taking the first D columns. In
the future, as personal whole exome sequencing becomes
increasingly affordable and accessible, available data will
become richer. We propose the following workflow:

1. Select a phenotype P, and a desired classification er-
Tor €.

2. Take the first D rows (alleles) from the data set, and
train a classifier for P.

3. If the classifier achieves error greater than e, repeat
with 2D,4D,8D, ... rows.

At the end of this process, assuming that the set of alleles
correlated with the phenotype is not too localized, we have
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Figure 9. Plot of advantage in classification accuracy vs. mito-
chondrial distance between ethnic groups. Shading (redness) in-
tensity is proportional to “difficulty” of the classification problem,
measured by number of features required to reach 95% classifica-
tion accuracy.

a truncation of coordinates suitable for our specific prob-
lem. We imagine that this may be useful when we wish to
use the data set to classify (or regress) a large number of
diverse phenotypes.
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